302 research outputs found

    Stationary solutions for the parity-even sector of the CPT-even and Lorentz-covariance-violating term of the standard model extension

    Full text link
    In this work, we focus on some properties of the parity-even sector of the CPT-even electrodynamics of the standard model extension. We analyze how the six non-birefringent terms belonging to this sector modify the static and stationary classical solutions of the usual Maxwell theory. We observe that the parity-even terms do not couple the electric and magnetic sectors (at least in the stationary regime). The Green's method is used to obtain solutions for the field strengths E and B at first order in the Lorentz- covariance-violating parameters. Explicit solutions are attained for point-like and spatially extended sources, for which a dipolar expansion is achieved. Finally, it is presented an Earth-based experiment that can lead (in principle) to an upper bound on the anisotropic coefficients as stringent as (Īŗ~eāˆ’)ij<2.9Ɨ10āˆ’20.(\widetilde{\kappa}_{e-}) ^{ij}<2.9\times10^{-20}.Comment: 8 pages, revtex style, revised published version, to appear in EPJC (2009

    Consistency analysis of a nonbirefringent Lorentz-violating planar model

    Full text link
    In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor ĪŗĪ¼Ī½\kappa_{\mu\nu}. The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0ā‰¤Īŗ00<10\leq\kappa_{00}<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a Ī»āˆ£Ļ†āˆ£4āˆ’\lambda|\varphi|^{4}-Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio

    Optic Nerve Head Quantification in Idiopathic Intracranial Hypertension by Spectral Domain OCT

    Get PDF
    Objective: To evaluate 3D spectral domain optical coherence tomography (SDOCT) volume scans as a tool for quantification of optic nerve head (ONH) volume as a potential marker for treatment effectiveness and disease progression in idiopathic intracranial hypertension (IIH). Design and Patients: Cross-sectional pilot trial comparing 19 IIH patients and controls matched for gender, age and body mass index. Each participant underwent SDOCT. A custom segmentation algorithm was developed to quantify ONH volume (ONHV) and height (ONHH) in 3D volume scans. Results:Whereas peripapillary retinal nerve fiber layer thickness did not show differences between controls and IIH patients, the newly developed 3D parameters ONHV and ONHH were able to discriminate between controls, treated and untreated patients. Both ONHV and ONHH measures were related to levels of intracranial pressure (ICP). Conclusion: Our findings suggest 3D ONH measures as assessed by SDOCT as potential diagnostic and progression markers in IIH and other disorders with increased ICP. SDOCT may promise a fast and easy diagnostic alternative to repeated lumba

    NetMets: software for quantifying and visualizing errors in biological network segmentation

    Get PDF
    One of the major goals in biomedical image processing is accurate segmentation of networks embedded in volumetric data sets. Biological networks are composed of a meshwork of thin filaments that span large volumes of tissue. Examples of these structures include neurons and microvasculature, which can take the form of both hierarchical trees and fully connected networks, depending on the imaging modality and resolution. Network function depends on both the geometric structure and connectivity. Therefore, there is considerable demand for algorithms that segment biological networks embedded in three-dimensional data. While a large number of tracking and segmentation algorithms have been published, most of these do not generalize well across data sets. One of the major reasons for the lack of general-purpose algorithms is the limited availability of metrics that can be used to quantitatively compare their effectiveness against a pre-constructed ground-truth. In this paper, we propose a robust metric for measuring and visualizing the differences between network models. Our algorithm takes into account both geometry and connectivity to measure network similarity. These metrics are then mapped back onto an explicit model for visualization

    Testing CPT- and Lorentz-odd electrodynamics with waveguides

    Full text link
    We study CPT- and Lorentz-odd electrodynamics described by the Standard Model Extension. Its radiation is confined to the geometry of hollow conductor waveguide, open along zz. In a special class of reference frames, with vanishing both 0-th and zz components of the background field, (kAF)Ī¼(k_{\rm AF})^\mu, we realize a number of {\em huge and macroscopically detectable} effects on the confined waves spectra, compared to standard results. Particularly, if (kAF)Ī¼(k_{\rm AF})^\mu points along xx (or yy) direction only transverse electric modes, with Ez=0E_z=0, should be observed propagating throughout the guide, while all the transverse magnetic, Bz=0B_z=0, are absent. Such a strong mode suppression makes waveguides quite suitable to probe these symmetry violations using a simple and easily reproducible apparatus.Comment: 11pages, double-spacing, tex forma

    Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS

    Get PDF
    Susac syndrome, a rare but probably underdiagnosed combination of encephalopathy, hearing loss, and visual deficits due to branch retinal artery occlusion of unknown aetiology has to be considered as differential diagnosis in various conditions. Particularly, differentiation from multiple sclerosis is often challenging since both clinical presentation and diagnostic findings may overlap. Optical coherence tomography is a powerful and easy to perform diagnostic tool to analyse the morphological integrity of retinal structures and is increasingly established to depict characteristic patterns of retinal pathology in multiple sclerosis. Against this background we hypothesised that differential patterns of retinal pathology facilitate a reliable differentiation between Susac syndrome and multiple sclerosis. In this multicenter cross-sectional observational study optical coherence tomography was performed in nine patients with a definite diagnosis of Susac syndrome. Data were compared with age-, sex-, and disease duration-matched relapsing remitting multiple sclerosis patients with and without a history of optic neuritis, and with healthy controls. Using generalised estimating equation models, Susac patients showed a significant reduction in either or both retinal nerve fibre layer thickness and total macular volume in comparison to both healthy controls and relapsing remitting multiple sclerosis patients. However, in contrast to the multiple sclerosis patients this reduction was not distributed over the entire scanning area but showed a distinct sectorial loss especially in the macular measurements. We therefore conclude that patients with Susac syndrome show distinct abnormalities in optical coherence tomography in comparison to multiple sclerosis patients. These findings recommend optical coherence tomography as a promising tool for differentiating Susac syndrome from MS

    The investigation of acute optic neuritis: a review and proposed protocol

    Full text link
    • ā€¦
    corecore